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Abstract

In this paper, the modelling strategy of a Cosserat rod element (CRE) is addressed systematically for three-dimen-
sional dynamical analysis of slender structures. We employ the nonlinear kinematic relationships in the sense of Coss-
erat theory, and adopt the Bernoulli hypothesis. The Kirchoff constitutive relations are adopted to provide an adequate
description of elastic properties in terms of a few elastic moduli. A deformed configuration of the rod is described by the
displacement vector of the deformed centroid curves and an orthonormal moving frame, rigidly attached to the cross-
section of the rod. The position of the moving frame relative to the inertial frame is specified by the rotation matrix,
parametrized by a rotational vector. The approximate solutions of the nonlinear partial differential equations of motion
in quasi-static sense are chosen as the shape functions with up to third order nonlinear terms of generic nodal displace-
ments. Based on the Lagrangian constructed by the Cosserat kinetic energy and strain energy expressions, the principle
of virtual work is employed to derive the ordinary differential equations of motion with third order nonlinear generic
nodal displacements. A simple example is presented to illustrate the use of the formulation developed here to obtain the
lower order nonlinear ordinary differential equations of motion of a given structure. The corresponding nonlinear
dynamical responses of the structures have been presented through numerical simulations by Matlab software.
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1. Introduction

Three-dimensional slender structures undergoing large displacements and rotations are often encoun-
tered in various engineering systems such as vehicles, space structures, robotics, aircrafts, and microelec-
tronic mechanical systems. Clearly, these systems consist of a set of interconnected components which
may be rigid or deformable. For example, a typical MEMS device may consist of relatively heavy load
bodies and thin springlike supports. For such a system, each heavy body can be assumed to be a rigid body
and each springlike component can be described as a deformable body. Since each of interconnected com-
ponents of such a system may undergo large displacements and/or rotations, an effective modelling strategy
that addresses very well to the strongly nonlinear dynamic behavior is crucial in estimating system perfor-
mance and guiding the reliability verification process.

Nonlinear finite element method provides a general approach to structural modelling of multibody sys-
tems that consist of interconnected rigid and deformable components. A number of papers has recently been
published, presenting new concepts and new algorithms for modelling highly flexible spatial frame struc-
tures (Argyris et al., 1978; Cardona and Geradin, 1988; Dutta and White, 1992). An overview and compre-
hensive treatment of this topic can be found, for instance, in Shabana (1998) and Belytschko et al. (2002).
The Cosserat approach, that can accommodate a good approximation the nonlinear behavior of complex
structures composed of materials with different constitutive properties, variable geometry and damping
characteristics (Green et al., 1974; Antman, 1995; Tucker and Wang, 1999; Antman et al., 1998), has been
utilized to develop finite element formulations for deformable bodies. The finite element approach based on
the Cosserat theory (geometrically exact finite-strain beam theory) is usually attributed to Reissner (1981)
and Simo (1985). Simo (1985) has discussed a convenient parameterization of the rod model developed by
Antman (1972) and Simo and Vu-Quoc (1986) have considered the associated finite element formulation.
The computational procedure in Simo and Vu-Quoc (1986) uses a variational formulation of the equations
of motion and an expansion of the kinematic quantities in terms of shape functions and nodal values. Many
modern finite element developers of the three-dimensional beam theories, e.g. Jelenic and Saje (1995), Smo-
lenski (1999), and Zupan and Saje (2003) based their approach on the geometrically exact beam theory.
Another approach based on a system of Cosserat-type bodies can be traced back to the work of Wozniak
(1973). Homogeneously deformable bodies have been analyzed as pseudo-rigid bodies (Cohen and Mun-
caster, 1984) and Cosserat points (Rubin, 1985a). The theory of a Cosserat point is a special continuum
theory that models deformation of a small structure that is essentially a point surrounded by some small
but finite region. The numerical procedure based on the theory of a Cosserat point proposed in Rubin
(1985a,b) has been used to study the dynamics of spherically symmetric problems in Rubin (1987). Re-
cently, the theory of a Cosserat point has been generalized to model a fully nonlinear finite element for
the numerical solution of 3-D dynamic problems of elastic beams (Rubin, 2001).

However, in practice the use of FEM codes to simulate complex multibody systems such as MEMS de-
vices is prohibitively cumbersome, expensive, and time consuming. On the other hand, FEM models use
numerous variables to describe the device state. This may lead the process of mapping the design space
complex and the relationship between each of these variables and the overall device performance is not
clear to designers. Recently, component level modelling methods, which contain a library of parameterised
behavioral models for frequently used MEMS components (Lorenz and Neual, 1998; Mukherjee et al.,
1999), have been developed. In Lorenz and Neual (1998) and Mukherjee et al. (1999), every component
is described as a single element in contrast to FE models where the component is normally discretized into
many elements. Consequently, lower degree models are established and the simulation time can be greatly
reduced. The mechanical behavior of the components, however, is often modelled using basic models, con-
taining e.g. linear stiffness relationships and/or approximations of basic nonlinearities.

Recently, motivated by the developments in MEMS modelling, the Cosserat theory has been employed
to develop a novel modelling strategy that addresses very well to the practical needs for rapid modelling of
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slender structures such as the springlike components in MEMS, see Wang et al. (2004b). This modelling
strategy has been successfully used to investigate the nonideal properties of typical MEMS beams (Gould
and Wang, 2005). In the sense of Cosserat theory, the motion of rods in three-dimensional space can be
demonstrated by behaviors of a reference curve and three perpendicular unit vectors (directors). Conse-
quently, the equations of motion are nonlinear partial differential equations, which are functions of time
and one space variable. For static problems, however, the equations become nonlinear ordinary differential
equations, which can be solved approximately using standard techniques like the perturbation method to
satisfy boundary conditions. In contrast, for dynamical problems, it is necessary to introduce a numerical
procedure which discretizes the equations. In the strategy for modelling of a Cosserat rod element (Wang
et al., 2004b), the basic kinematic quantities are the position of a point on the Cosserat curve and an
orthogonal transformation that define the rotation of an orthogonal triad attached to the cross-section
at each point of the Cosserat curve. This enables description of a rod using nonlinear ordinary differential
equations in terms of the generic nodal displacements of a CRE.

As an initial consideration, the modelling strategy in Wang et al. (2004b) is developed for 2-D case. In
this paper, the modelling strategy of CRE is addressed systematically for the 3-D problems. The fundamen-
tal problem of any finite element formulation is the choice of the shape functions. The approximate solu-
tions of the nonlinear equations of motion in quasi-static sense are chosen as the shape functions with up to
third order nonlinear terms of generic nodal displacements. In three dimensions, the nonlinear differential
equations cannot be integrated in a closed form even in the static sense, therefore the perturbation method
is employed here to solve the system approximately. The Kirchoff constitutive relations are adopted to pro-
vide an adequate description of elastic properties in terms of a few elastic moduli. Based on the Lagrangian
constructed by the Cosserat kinetic energy and strain energy expressions, the principle of virtual work is
used to derive the ordinary differential equations of motion with third order nonlinear generic nodal dis-
placements. The essential features and novel aspects of the present formulation for CREs are briefly sum-
marized below:

1. The shape functions for CREs are derived from the differential equations governing the flexural–
flexural–torsional motion of extensional rods, taking into account all the geometric nonlinearities in
the system. Consequently, the higher accuracy of the dynamic responses can be achieved by dividing
the rod into a few elements which is much less than the traditional finite element methods in which
the interpolation functions are usually extremely simple functions such as low order polynomials.

2. The mathematical simplicity when formulating deformable bodies enables more convenient for model-
ling the multibody systems that consist of interconnected rigid and deformable components.

3. The resulting nonlinear ordinary differential equations with lower degree-of-freedom are typically easy
to simulate or integrate into system-level simulations.

An outline of the main contents of this paper is as follows. We begin in Section 2 by introducing the basic
definitions and kinematic assumptions on the nonlinear elastic rods that can suffer flexure, extension, tor-
sion, and shear. The rotational vector that is free both of singularities and constraints is employed as a
parametrization to specify the deformed configuration space. We limited our attention here to the model-
ling of Cosserat rod elements in which the small effect of shear will be neglected. The governing equations of
motion and the Kirchoff constitutive relations are presented in Section 3. The straightforward perturbation
method is employed in Section 4 to solve the corresponding static problem. The approximate solutions ob-
tained are subsequently used as shape functions of Cosserat rod elements. In Section 5, Lagrangian ap-
proach is employed to formulate the nonlinear ordinary differential equations of motion of Cosserat rod
elements. In terms of the shape functions derived in Section 4, the Lagrangian is constructed by the Coss-
erat kinetic energy and strain energy expressions, and the virtual work done by external point loads and
distributed loads is discussed. A simple example is presented in Section 6 to illustrate the use of the formu-
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lation developed here to obtain the lower order nonlinear ordinary differential equations of motion of a
given structure. The corresponding nonlinear dynamical responses of the structure have been presented
through numerical simulations by Matlab software.

The following conventions and nomenclature will be used through out this paper. Vectors, which are
elements of Euclidean 3-space R3, are denoted by lowercase, bold-face symbols, e.g., u, v; vector-valued
functions are denoted by lowercase, italic, bold-face symbols, e.g., u, v; tensors are denoted by upper-case,
bold-face symbols, e.g., I, J; matrices are denoted by upper-case, italic, bold-face symbols, e.g., M, K. The
three vectors {e1, e2, e3} are assumed to form a fixed right-handed orthogonal basis. The summation con-
vention for repeated indices is used. The symbols ot and os denote differentiation with respect to time t and
arc-length parameter s, respectively. The symbols ð_Þ and ( 0) denote differentiation with respect to dimen-
sionless time parameter s and dimensionless length parameter r, respectively.
2. Kinematical preliminaries

2.1. Basic definitions and kinematic assumptions

Adopt Cartesian coordinates (x, y, z) in inertial basis (e1, e2, e3) with Newtonian time t. According to the
Bernoulli hypothesis the plane cross-sections suffer only rigid rotation during deformation and remain
plane after deformation and preserve their shape and area. For the sake of convenience, we introduce
the following definitions: (1) the reference configuration, where the geometrical and mechanical variables
of the rod, including the loading, are known; (2) an arbitrary deformed configuration, where only the load-
ing is prescribed, while the remaining variables are unknown.

It is therefore convenient to introduce an orthonormal basis di(s, t) (i = 1,2,3) of a cross-section at s,
termed the moving basis, such that d3 is normal to the rotated cross-section, and d1 and d2 lie in the plane
of the rotated cross-section. The motion of a rod segment can be modelled as a Cosserat rod whose con-
figuration is described by its neutral axis r(s, t) (Cosserat curve) and 3 orthogonal unit vectors di(s, t)
(i = 1,2,3) (Cosserat directors) as shown in Fig. 1.

At any time, r describes the axis of the rod whose cross-section orientations are determined by di such
that osr Æ d3 > 0. This condition implies that (i) the local ration of deformed length to reference length of the
axis cannot be reduced to zero since josrj > 0, and (ii) a typical cross-section (s = s0) cannot undergo a total
shear in which the plane determined by d1 and d2 is tangent to the curve r(Æ, t) at r(s0, t) (Reissner, 1981). In
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Fig. 1. A simple Cosserat model.
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general, as a result of shear deformations of the rod, the cross-sections are not perpendicular to the line of
centroids.

In an inertial Cartesian basis {e1, e2, e3} we may write
rðs; tÞ ¼ riðs; tÞei ¼ xðs; tÞe1 þ yðs; tÞe2 þ zðs; tÞe3. ð1Þ

The motion involves both the velocity of the curve, otr(s, t), and angular velocity of the cross-sections

w(s, t) so that
otdiðs; tÞ ¼ wðs; tÞ � diðs; tÞ. ð2Þ

In a similar manner the strains of the Cosserat rod are classified into ‘‘linear strain’’ vector v(s, t) = osr(s, t)
and ‘‘angular strain’’ vector u(s, t) so that
osdiðs; tÞ ¼ uðs; tÞ � diðs; tÞ. ð3Þ

It follows from the definition (2) that
di � otdi ¼ di � ðw� diÞ ¼ wðdi � diÞ � diðdi � wÞ ¼ 2w.
Therefore,
w ¼ 1

2
di � otdi. ð4Þ
Similarly, from the definition (3) we have
u ¼ 1

2
di � osdi. ð5Þ
Since the basis {d1, d2, d3} is natural for the intrinsic description of deformation, we decompose relevant
vector-valued functions with respect to it
vðs; tÞ ¼ viðs; tÞdiðs; tÞ; uðs; tÞ ¼ uidiðs; tÞ; wðs; tÞ ¼ widiðs; tÞ. ð6Þ
2.2. Parametrization of the rotation matrix

There is a number of choices for the parametrization of rotation matrix, for example, the Euler angles,
the quaternion parameters, and the rotational vector being the most usual (Stuelpnagel, 1964). Here, we
employ the rotational vector that is free both of singularities and constraints. Because of the orthogonality
the rotation matrix is a proper orthogonal matrix in SO(3), its nine components can be expressed by only
three independent parameters. Denote S the spin matrix of a vector a = aiei as
SðaÞ ¼
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5. ð7Þ
Then, the rotation matrix R is determined by the expression (Stuelpnagel, 1964)
Rð/Þ ¼ I þ sin/
/

Sð/Þ þ 1� cos/

/2
S2ð/Þ; ð8Þ
where / = /iei is the rotational vector, S(/) is the spin matrix of / defined by (7), and
/ ¼ ð/2

1 þ /2
2 þ /2

3Þ
1=2 is the rotational norm or the length of the rotational vector. An expansion of trig-

onometric functions in Eq. (8) in MacLaurin�s series yields
R ¼ I þ S þ 1

2!
S2 þ 1

3!
S3 þ � � � þ 1

n!
Sn þ � � � ¼ expS. ð9Þ
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Thus, the rotation matrix may alternatively be expressed by an exponential map, the exponentiation of the
spin matrix associated with the rotational vector. Note that, as a consequence of the exponentiation of the
spin matrix S(/) being equal to R(/) 2 SO(3), the spin matrix S(/) belongs to Lie algebra so(3) associated
with the Lie group SO(3) (Jones et al., 1987).

Conversely, taking a given orthogonal matrix R as a rotation matrix, the associated rotation vector /
can be derived from (7) and (8). The rotational norm / can be calculated by
/ ¼ cos�1 TrðRÞ � 1

2
. ð10Þ
By taking the matrix logarithm of R we can obtain the skew-symmetric matrix S as following:
S ¼ logR ¼ /
2 sin/

ðR� RTÞ. ð11Þ
Therefore / = /iei with /1 = �S23, /2 = S13, and /3 = �S12.
In terms of the rotational vector /, Eqs. (7) and (8) give the exact value of the current rotation matrix.

Using truncated MacLaurin�s series of various order in Eq. (9), approximate values of the rotation matrix
are obtained and corresponding simplified theories can be derived. For example, a so called first order
theory is obtained if small rotations are assumed so that the quadratic and higher order terms in Eq. (9)
may be neglected.

2.3. Specifications for the deformed configuration space

The position vector r(s, t) defined by (1) is an element of Euclidean vector space R3. The orientation of
the moving basis is represented by the rotation matrix, which is an element of the Lie group SO(3). Accord-
ingly, the set of all possible configurations of the rod is defined by
C ¼ fðr; RÞjr : s ! R3; R : s ! SOð3Þg. ð12Þ

This set is referred to as the deformed configuration space. The quantities r and R are termed the kinematic
quantities of the rod. Since the rotation matrix is related to the three parameters, the components of the
rotational vector /, the Lie group SO(3) of rotation matrices is three-parametric, i.e. it may be viewed
as being a 3-D nonlinear differentiable manifold.

For a typical slender rod such as the components in MEMS, the effect of shearing deformation can be
negligible, the cross-section of the rod is therefore assumed to be perpendicular to the tangent to the Coss-
erat curve, i.e.
vðs; tÞ ¼ osrðs; tÞ ¼ josrðs; tÞjd3ðs; tÞ. ð13Þ
In this case, we write
d3ðs; tÞ ¼
osrðs; tÞ
josrðs; tÞj

, m1ðs; tÞe1 þ m2ðs; tÞe2 þ m3ðs; tÞe3 ð14Þ
with
m21ðs; tÞ þ m22ðs; tÞ þ m23ðs; tÞ ¼ 1. ð15Þ

where m1, m2 and m3 can be written as
m1ðs; tÞ ¼
osxðs; tÞ
josrðs; tÞj

; m2ðs; tÞ ¼
osyðs; tÞ
josrðs; tÞj

; and m3ðs; tÞ ¼
oszðs; tÞ
josrðs; tÞj

; ð16Þ
by differentiating the position vector r(s, t) defined in (1) with respect to s.
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We assume that the directors {d1, d2, d3} can be obtained by the following way. First of all, we rotate
directors {e1, e2, e3} about e3 with an angle u to obtain the directors f~d1; ~d2; e3g. Then, rotation matrix
Ra associated with the rotational vector /a = ue3 can be written as
Ra ¼ Rð/aÞ ¼

cosu � sinu 0

sinu cosu 0

0 0 1

2
664

3
775. ð17Þ
Next, we introduce a rotational vector
/b ¼ � sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m21 þ m22

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m21 þ m22

p m2~d1 þ
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m21 þ m22

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m21 þ m22

p m1~d2
which rotates the vectors f~d1; ~d2; e3g to {d1, d2, d3}. Here, we assume that m21 þ m22 6¼ 0. Other wise d3 = e3,
this rotating procedure can be omitted. Let Rb be the corresponding rotation matrix associated with the
rotational vector /b. Then
Rb ¼ Rð/bÞ ¼

m2
1
m3þm2

2

m2
1
þm2

2

m1m2ðm3�1Þ
m2
1
þm2

2

m1

m1m2ðm3�1Þ
m2
1
þm2

2

m2
2
m3þm2

1

m2
1
þm2

2

m2

�m1 m2 m3

2
66664

3
77775. ð18Þ
Consequently, the moving directors are obtained as
d1 ¼
ðm21m3 þ m22Þ cosu

m21 þ m22
þ m1m2ðm3 � 1Þ sinu

m21 þ m22

� �
e1

þ ðm22m3 þ m21Þ sinu
m21 þ m22

þ m1m2ðm3 � 1Þ cosu
m21 þ m22

� �
e2 � ðm1 cosuþ m2 sinuÞe3; ð19Þ

d2 ¼ �ðm21m3 þ m22Þ sinu
m21 þ m22

þ m1m2ðm3 � 1Þ cosu
m21 þ m22

� �
e1

þ ðm22m3 þ m21Þ cosu
m21 þ m22

� m1m2ðm3 � 1Þ sinu
m21 þ m22

� �
e2 þ ðm1 sinu� m2 cosuÞe3; ð20Þ

d3 ¼m1e1 þ m2e2 þ m3e3. ð21Þ
Obviously u(s, t) is a variable related to torsion of the rod. Expanding the directors in polynomials about
m1, m2, / and reserving the terms up to third order, we have
d1ðs; tÞ � 1� 1

2
u2ðs; tÞ � 1

2
m21ðs; tÞ �

1

2
m1ðs; tÞm2ðs; tÞuðs; tÞ

� �
e1

þ uðs; tÞ � 1

2
m1ðs; tÞm2ðs; tÞ �

1

2
m22ðs; tÞuðs; tÞ �

1

6
u3ðs; tÞ

� �
e2

þ �m1ðs; tÞ � m2ðs; tÞuðs; tÞ þ
1

2
m1ðs; tÞu2ðs; tÞ

� �
e3; ð22Þ
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d2ðs; tÞ � �uðs; tÞ � 1

2
m1ðs; tÞm2ðs; tÞ þ

1

2
m21ðs; tÞuðs; tÞ þ

1

6
/3ðs; tÞ

� �
e1

þ 1� 1

2
u2ðs; tÞ � 1

2
m22ðs; tÞ þ

1

2
m1ðs; tÞm2ðs; tÞuðs; tÞ

� �
e2

þ �m2ðs; tÞ þ m1ðs; tÞ/ðs; tÞ þ
1

2
m2ðs; tÞu2ðs; tÞ

� �
e3; ð23Þ

d3ðs; tÞ �m1ðs; tÞe1 þ m2ðs; tÞe2 þ 1� 1

2
m21ðs; tÞ �

1

2
m22ðs; tÞ

� �
e3. ð24Þ
For convenience to describe the displacements and rotations in the inertia frame, we regard directors di (s, t)
(i = 1,2,3) as those obtained by rotating inertial frame {e1, e2, e3} with a rotation vector
/ ¼ /xðs; tÞe1 þ /yðs; tÞe2 þ /zðs; tÞe3. ð25Þ
Now, based on the relations (19)–(21), utilizing the inverse procedure mentioned in Section 2.2, the rota-
tional norm / and the spin matrix associated with the rotation vector / in (25) can be derived from
/ ¼ cos�1 TrðRbRaÞ � 1

2
ð26Þ
and
S ¼ logðRbRaÞ ¼
/

2 sin/
ðRbRa � RT

aR
T
b Þ. ð27Þ
Consequently, the approximate relations between (/x, /y, /z) and (m1, m2, u), up to third order, are obtained
as
/xðs; tÞ ¼ �m2ðs; tÞ þ 1
2
uðs; tÞm1ðs; tÞ � 1

6
m21ðs; tÞ þ m22ðs; tÞ � 1

2
u2ðs; tÞ

� �
m2ðs; tÞ;

/yðs; tÞ ¼ m1ðs; tÞ þ 1
2
uðs; tÞm2ðs; tÞ þ 1

6
m21ðs; tÞ þ m22ðs; tÞ � 1

2
u2ðs; tÞ

� �
m1ðs; tÞ;

/zðs; tÞ ¼ uðs; tÞ � 1
12
ðm21ðs; tÞ þ m22ðs; tÞÞuðs; tÞ;

8>><
>>: ð28Þ
or equivalently,
m1ðs; tÞ ¼ /yðs; tÞ þ 1
2
/xðs; tÞ/zðs; tÞ � 1

6
/2

xðs; tÞ þ /2
yðs; tÞ þ /3

z ðs; tÞ
� �

/yðs; tÞ;

m2ðs; tÞ ¼ �/xðs; tÞ þ 1
2
/yðs; tÞ/zðs; tÞ þ 1

6
/2

xðs; tÞ þ /2
yðs; tÞ þ /2

z ðs; tÞ
� �

/xðs; tÞ;

uðs; tÞ ¼ /zðs; tÞ þ 1
12
ð/2

xðs; tÞ þ /2
yðs; tÞÞ/zðs; tÞ.

8>>>><
>>>>:

ð29Þ
These relations are very useful in solving the static problem and will be used below to derive the shape func-
tions for CRD.
3. The governing equations of motion

The dynamical evolution of the rod with density, q(s), and cross-section area, A(s) is governed by the
Newton�s dynamical laws:
qðsÞAðsÞottr ¼ osnðs; tÞ þ fðs; tÞ;
othðs; tÞ ¼ osmðs; tÞ þ vðs; tÞ � nðs; tÞ þ lðs; tÞ;

�
ð30Þ
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where
nðs; tÞ ¼ niðs; tÞdiðs; tÞ; mðs; tÞ ¼ miðs; tÞdiðs; tÞ ð31Þ

are the contact force and contact torque densities, respectively; while
hðs; tÞ ¼ hiðs; tÞdiðs; tÞ ð32Þ

denotes the angular momentum densities; f(s, t) and l(s, t) denote the prescribed external force and torque
densities, respectively.

The simplest constitutive model is based on the Kirchoff constitutive relations which provide an ade-
quate description of elastic properties in terms of a few elastic moduli. One may exploit the full versatility
of the Cosserat model by generating the Kirchoff constitutive relations to include viscoelasticity and other
damping, curved reference states with memory and effects to prohibit total compression.

The contact forces, contact torques and the angular momentum are given as
n ¼ Kðv� d3Þ; m ¼ JðuÞ; h ¼ IðwÞ; ð33Þ

where according to the Kirchoff constitutive relations, the tensors K, J and I are described as
Kðs; tÞ ¼ Kiiðs; tÞðdiðs; tÞ � diðs; tÞÞ;
Jðs; tÞ ¼

P2
i;j¼1

J ijðs; tÞðdiðs; tÞ � djðs; tÞÞ þ J 33ðs; tÞðd3ðs; tÞ � d3ðs; tÞÞ;

Iðs; tÞ ¼
P2
i;j¼1

I ijðs; tÞðdiðs; tÞ � djðs; tÞÞ þ I33ðs; tÞðd3ðs; tÞ � d3ðs; tÞÞ.

8>>>><
>>>>:

ð34Þ
The corresponding components are given as
K11 ¼ K22 ¼ GAðsÞ; K33 ¼ EAðsÞ;
J 11 ¼

R
AðsÞ Eg

2 dA; J 22 ¼
R
AðsÞ En

2 dA;
J 33 ¼

R
AðsÞ Gðn

2 þ g2ÞdA; J 12 ¼ �J 21 ¼
R
AðsÞ EngdA;

I11 ¼
R
AðsÞ qðsÞg2 dA; I22 ¼

R
AðsÞ qðsÞn

2 dA;
I33 ¼

R
AðsÞ qðsÞðn

2 þ g2ÞdA; I12 ¼ �I21 ¼
R
AðsÞ qðsÞngdA;

8>>>>><
>>>>>:

ð35Þ
where E and G are the Young�s modulus of elasticity and shear modulus respectively.
4. Shape functions for Cosserat rod elements

For convenience, consider a uniform and initially straight rod element of constant length L, supported in
an arbitrary manner at s = a = 0 and s = b = L. It is assumed in the following that the static equilibrium of
the rod corresponds to the situation where the directions of d3 and e3 are coincident with each other and d1,
d2 are parallel to e1, e2, respectively. The principal axes are chosen to parallel e1, e2 and e3. For the sake of
simplicity, it will be assumed that the axes along the directors d1, d2 and d3 are chosen to be the principal
axes of inertia of the cross-section at s, and centered at the cross-section�s center of mass. Then, for a uni-
form rod with cross-section area A(s), we have J12 = J21 = 0, I12 = I21 = 0 and
K11 ¼ K22 ¼ GAðsÞ; K33 ¼ EAðsÞ;
J 11 ¼ E

R
AðsÞ g

2 dA; J 22 ¼ E
R
AðsÞ n

2 dA;

I11 ¼ q
R
AðsÞ g

2 dA; I22 ¼ q
R
AðsÞ n

2 dA;

J 33 ¼ G
R
AðsÞðn

2 þ g2ÞdA ¼ G
E ðJ 11 þ J 22Þ;

I33 ¼ q
R
AðsÞðn

2 þ g2ÞdA ¼ I11 þ I22.

8>>>>>><
>>>>>>:

ð36Þ
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Assume that the shape functions for a CRE satisfy the corresponding static equations of (30), i.e.
osnðsÞ ¼ 0; ð37Þ
osmðsÞ þ vðsÞ � nðsÞ ¼ 0; ð38Þ
where the contact force and contact torque densities are
nðsÞ ¼ niðsÞdiðsÞ; n1 ¼ K11v1; n2 ¼ K22v2; n3 ¼ K33ðv3 � 1Þ;
mðsÞ ¼ miðsÞdiðsÞ; m1 ¼ J 11u1; m2 ¼ J 22u2; m3 ¼ J 33u3.

�
ð39Þ
with uðsÞ ¼ 1
2
diðsÞ � osdiðsÞ, and di(s) (i = 1,2,3) are given by (22)–(24).

As mentioned in Section 2.3, for a typical slender rod as the components in MEMS, the effect of shearing
deformation can be negligible, therefore the cross-section of rod is assumed to be perpendicular to the tan-
gent to the Cosserat curve, i.e. the strain vector v(s, t) = josr(s)jd3(s) satisfies the form (13). Thus, v1 = v2 = 0
and v3 = josr(s)j. Consequently, instead of n1 = K11v1 and n2 = K22v2, the contact forces n1 and n2 follow
from (38)
n1 ¼
�osm2 � u3m1 þ u1m3

v3
; and n2 ¼

osm1 � u3m2 þ u2m3

v3
. ð40Þ
As a prelude to expanding the nonlinear shape functions to a form suitable for a perturbation analysis of
the motion, it is useful to introduce some natural scales to obtain a dimensionless equation of motion.
Introduce the dimensionless variables
r ¼ s
L0

; �r ¼ r

L0

; �x ¼ x
L0

; �y ¼ y
L0

; �z ¼ z
L0

; s ¼ x0t; ð41Þ
where L0 and x0 are the reference length and natural frequency yet to be determined later, respectively.
Assume that the dimensionless generic nodal displacements (boundary displacements and rotations) at

r = 0 and r = L/L0 are
qa ¼ ½ �Xa �Y a �Za �Uxa �Uya �Uza �T; ð42Þ
and
qb ¼ ½ �Xb �Y b �Zb �Uxb �Uyb �Uzb �T; ð43Þ
respectively. Substituting (42) and (43) into (1), we obtain the boundary conditions for �x, �y and �z as
�xð0Þ ¼ �Xa; �yð0Þ ¼ �Y a; �zð0Þ ¼ �Za;

�xðlÞ ¼ �Xb; �yðlÞ ¼ �Y b; �zðlÞ ¼ lþ �Zb;

�
ð44Þ
where l = L/L0 is the dimensionless length of the rod element. Substituting (42) and (43) into (29), we ob-
tain the boundary conditions for m1, m2 and u as
m1ð0Þ ¼ �x0ð0Þ
j�r0ð0Þj ¼ �Uya þ 1

2
�2UxaUza � 1

6
�3ðU2

xa þ U2
ya þ U2

zaÞUya;

m2ð0Þ ¼ �y0ð0Þ
j�r0ð0Þj ¼ ��Uxa þ 1

2
�2UyaUza þ 1

6
�3ðU2

xa þ U2
ya þ U2

zaÞUxa;

uð0Þ ¼ �Uza þ 1
12
�3ðU2

xa þ U2
yaÞUza;

m1ðlÞ ¼ �x0ðlÞ
j�r0ðlÞj ¼ �Uyb þ 1

2
�2UxbUzb � 1

6
�3ðU2

xb þ U2
yb þ U2

zbÞUyb;

m2ðlÞ ¼ �y0ðlÞ
j�r0ðlÞj ¼ ��Uxb þ 1

2
�2UybUzb þ 1

6
�3ðU2

xb þ U2
yb þ U2

zbÞUxb;

uðlÞ ¼ �Uzb þ 1
12
�3ðU2

xb þ U2
ybÞUzb.

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð45Þ
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Treating � as a perturbation parameter which is the order of the amplitude of the displacement and can be
used as a crutch in obtaining the approximate solution, the shape functions can be obtained by solving the
static equations (37) and (38) with the corresponding boundary conditions (44) and (45) and also the
restrictions (40) on the assumption of neglecting the effect of shearing deformation. To do this, we seek
a straightforward expansion
�xðrÞ ¼ �x̂1ðrÞ þ �2x̂2ðrÞ þ �3x̂3ðrÞ þ � � � ;
�yðrÞ ¼ �ŷ1ðrÞ þ �2ŷ2ðrÞ þ �3ŷ3ðrÞ þ � � � ;
�zðrÞ ¼ rþ �ẑ1ðrÞ þ �2ẑ2ðrÞ þ �3ẑ3ðrÞ þ � � � ;
uðrÞ ¼ �û1ðrÞ þ �2û2ðrÞ þ �3û3ðrÞ þ � � �

8>>><
>>>:

ð46Þ
Substituting (46) into (37) and (38) associated with (40) and, because �xi; �yi; �zi and �ui are independent of �,
set the coefficient of each power of � equal to zero. This leads to a set of linear ordinary differential equa-
tions which can be solved using the Frobeniu�s method Arfken (1985) under the corresponding boundary
conditions (44) and (45). The solving procedure has been implemented in a MAPLE file (Wang et al.,
2004a). Consequently, the approximate series solutions are obtained and the first order ones are
x̂1ðrÞ ¼ Xa þ Uyar� ð3Xa � 3Xb þ 2lUya þ lUybÞ r2

l2
þ ð2Xa � 2Xb þ lUya þ lUybÞ r3

l3
;

ŷ1ðrÞ ¼ Y a � Uxar� ð3Y a � 3Y b � 2lUxa � lUxbÞ r2

l2
þ ð2Y a � 2Y b � lUxa � lUxbÞ r3

l3
;

ẑ1ðrÞ ¼ Za þ ðZb � ZaÞ r
l ;

û1ðrÞ ¼ Uza þ ðUzb � UzaÞ r
l .

8>>>><
>>>>:

ð47Þ
To investigate deflections up to third order nonlinearity in � it is adequate to adopt the truncated (46) to �3

order terms. The high order terms (up to third order) which are polynomials of r, can be easily solved using
a MAPLE programme (Wang et al., 2004a). For example, x̂2ðrÞ ¼ C1r5 þ C2r4 þ C3r3 þ C4r2 with
C1 ¼
K33

20l4J 22

ðZb � ZaÞð2Xa � 2Xb þ lUya þ lUybÞ. ð48Þ
Accordingly to the time-dependent, rod shape under the quasi-static condition is specified with the
(slowly) time-varying nodal displacements and rotations.
5. Equations of motion for Cosserat rod elements

In this section, the Lagrangian approach is employed to formulate the ordinary differential equations of
motion of Cosserat rod elements. The generalized Hamilton�s principle which, in its most general form, is
given by the variational statement
Z t2

t1

dðT�VÞdt þ
Z t2

t1

dWdt ¼ 0; ð49Þ
where T is the total kinetic energy of the system, V is the potential energy of the system (including the
strain energy and the potential energy of conservative external forces), d(Æ) represents the virtual displace-
ment (or variational) operator, and dW is the virtual work done by nonconservative forces (including
damping forces) and external forces not accounted for in V.

Assume that the time-varying dimensionless displacements at the ends (r = a/L0 and r = b/L0) of the
element model are
qaðsÞ ¼ ½XaðsÞ Y aðsÞ ZaðsÞ UxaðsÞ UyaðsÞ UzaðsÞ �T ð50Þ
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and
qbðsÞ ¼ ½XbðsÞ Y bðsÞ ZbðsÞ UxbðsÞ UybðsÞ UzbðsÞ �T; ð51Þ
respectively. Then, the generalized displacement vector for the element can be described by
qeðsÞ ¼ ½ qTa ðsÞ qTb ðsÞ �
T. ð52Þ
Consistent with the kinematic and constitutive assumptions described in Sections 2 and 3 and the shape
functions derived in Section 4, the kinetic energy per unit length is
T ¼ 1

2
fqAotr � otrþ Iðw; wÞg ¼ 1

2
fqAx2

0L
2
0
_�r � _�rþ x2

0Ið�w; �wÞg; ð53Þ
where q and A are the density of rod and the area of cross-section of rod, respectively. According to (1) and
(4), the velocity otr(s, t), and the angular velocity of the cross-section can be derived as
otr ¼ otxe1 þ otye2 þ otze3 ¼ x0L0ð _�xe1 þ _�ye2 þ _�ze3Þ ¼ x0L0
_�r ð54Þ
and
w ¼ 1

2
di � otdi ¼

1

2
x0di � _di ¼ x0�w; ð55Þ
respectively.
Under small strain conditions the strain energy per unit length of rod can be expressed in terms of the

strain vectors u and v as
U ¼ 1

2
fJðu; uÞ þ K33ðv3 � 1Þ2g ¼ 1

2

1

L2
0

Jð�u; �uÞ þ K33ð�v3 � 1Þ2
� 	

; ð56Þ
where the strain vector is
u ¼ 1

2
di � osdi ¼

1

2L0

di � d0i ¼
1

L0

�u and v3 ¼ josrj ¼ jr0j ¼ �v3. ð57Þ
Utilizing the time varying generic nodal displacements introduced in (50) and (51) instead of the static gen-
eric nodal displacements introduced in (42) and (43) respectively, the time varying generic displacements at
any point within the element can be expressed as nonlinear functions of the length parameter r and the
nodal displacement vector qe(s). Based on the nonlinear shape functions derived in Section 4, we have
�x ¼ x̂1ðr; sÞ þ x̂2ðr; sÞ þ x̂3ðr; sÞ;
�y ¼ ŷ1ðr; sÞ þ ŷ2ðr; sÞ þ ŷ3ðr; sÞ;
�z ¼ rþ ẑ1ðr; sÞ þ ẑ2ðr; sÞ þ ẑ3ðr; sÞ;
u ¼ û1ðr; sÞ þ û2ðr; sÞ þ û3ðr; sÞ;

8>>><
>>>:

ð58Þ
where the ith terms x̂i; ŷi; ẑi and ûi are ith order functions of the nodal displacement vector qe(s). For exam-
ple, based on (47) the first order terms are
x̂1ðr; sÞ ¼ XaðsÞ þ UyaðsÞr� ð3XaðsÞ � 3XbðsÞ þ 2lUyaðsÞ þ lUybðsÞÞ r2

l2

þð2XaðsÞ � 2XbðsÞ þ lUyaðsÞ þ lUybðsÞÞ r3

l3
;

ŷ1ðr; sÞ ¼ Y aðsÞ � UxaðsÞr� ð3Y aðsÞ � 3Y bðsÞ � 2lUxaðsÞ � lUxbðsÞÞ r2

l2

þð2Y aðsÞ � 2Y bðsÞ � lUxaðsÞ � lUxbðsÞÞ r3

l3
;

ẑ1ðr; sÞ ¼ ZaðsÞ þ ðZbðsÞ � ZaðsÞÞ r
l ;

/̂1ðr; sÞ ¼ UzaðsÞ þ ðUzbðsÞ � UzaðsÞÞ r
l .

8>>>>>>>>><
>>>>>>>>>:

ð59Þ
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The high order terms (up to third order), as indicated in Section 4, can be easily obtained using a MAPLE
program (Wang et al., 2004a). Consequently, the time varying generic displacements at any point within the
element can be written as
�x ¼ �xðr; qeðsÞÞ; �y ¼ �yðr; qeðsÞÞ; �z ¼ �zðr; qeðsÞÞ; u ¼ uðr; qeðsÞÞ. ð60Þ

This leads �r ¼ �rðr; qeðsÞÞ. Moreover, from (16), we have
m1 ¼
�x0ðr; qeðsÞÞ
j�r0ðr; qeðsÞÞj ¼ m1ðr; qeðsÞÞ; m2 ¼

�y0ðr; qeðsÞÞ
j�r0ðr; qeðsÞÞj ¼ m2ðr; qeðsÞÞ. ð61Þ
Substituting m1(r, q
e(s)), m2(r, q

e(s)) and u(r, qe(s)) into the expressions (22)–(24) yields
di ¼ diðr; qeðsÞÞ; i ¼ 1; 2; 3. ð62Þ

Similarly, from (28), we have
/x ¼ /xðr; qeðsÞÞ; /y ¼ /yðr; qeðsÞÞ; /z ¼ /zðr; qeðsÞÞ. ð63Þ
It follows from (55) and (57) and (62) that
�w ¼ 1

2
di � _di ¼ �wðr; qeðsÞÞ; �u ¼ 1

2
di � d0i ¼ �uðr; qeðsÞÞ: ð64Þ
Therefore, the kinetic energy density (53) and the potential energy density (56) are expressed as
T ¼ Tðr; qeðsÞ; _qeðsÞÞ; U ¼ Uðr; qeðsÞÞ. ð65Þ

Then, the Lagrangian defined in the classical form L ¼ T�V are obtained as
Lðqe; _qeÞ ¼ Tðqe; _qeÞ �VðqeÞ ¼
Z l

0

ðTðr; qe; _qeÞ �Uðr; qeÞÞL0 dr. ð66Þ
So far we have not precisely defined the type of loading. Let us assume that a load acting on the element is
composed from three additive parts. The first one is the interaction of the neighbored elements. The second
one is the external point (concentrated) loadings acting on the nodes. The last one represents a distributed
load with fixed direction and prescribed intensity as mentioned in Section 2. In keeping with the load def-
initions in the principle of virtual work, the total load has to be defined with respect to the inertial basis
because the generalized nodal displacements are defined with respect to them. Thus, let us denote
f iaðsÞ ¼
f i
xaðsÞ
f i
yaðsÞ
f i
zaðsÞ

2
64

3
75; f ib ¼

f i
xbðsÞ
f i
ybðsÞ
f i
zbðsÞ

2
64

3
75; l ia ¼

lixaðsÞ
liyaðsÞ
lizaðsÞ

2
64

3
75; l ib ¼

lixbðsÞ
liybðsÞ
lizbðsÞ

2
64

3
75 ð67Þ
be the interaction force and torque vector at nodes r = 0 and r = l respectively.
Similarly, the external point loadings are expressed as
f caðsÞ ¼
f c
xaðsÞ
f c
yaðsÞ
f c
zaðsÞ

2
64

3
75; f cbðsÞ ¼

f c
xbðsÞ
f c
ybðsÞ
f c
zbðsÞ

2
64

3
75; lca ¼

lcxaðsÞ
lcyaðsÞ
lczaðsÞ

2
64

3
75; lcb ¼

lcxbðsÞ
lcybðsÞ
lczbðsÞ

2
64

3
75; ð68Þ
while the distributed forces and torques may be expressed as
nd ¼
ndx ðr; sÞ
ndy ðr; sÞ
ndz ðr; sÞ

2
664

3
775; gd ¼

gdx ðr; sÞ
gdy ðr; sÞ
gdz ðr; sÞ

2
64

3
75. ð69Þ
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The virtual work done by the distributed load has the form
dWd ¼
Z l

0

ðndxd�xþ ndyd�y þ ndz d�zþ gdxd/x þ gdyd/y þ gdz d/zÞL0 dr

¼
Z l

0

ndx
o�xðr; qeÞ

oqe
þ ndy

o�yðr; qeÞ
oqe

þ ndz
o�zðr; qeÞ

oqe

�

þ gdx
o/xðr; qeÞ

oqe
þ gdy

o/yðr; qeÞ
oqe

þ gdz
o/zðr; qeÞ

oqe

�
dqeL0 dr ð70Þ
Let
f ieðsÞ ¼

f iaðsÞ
l iaðsÞ
f ibðsÞ
l ibðsÞ

2
6664

3
7775; f ceðsÞ ¼

f caðsÞ
lcaðsÞ
f cbðsÞ
lcbðsÞ

2
6664

3
7775; ð71Þ

f deðs; qeÞ ¼
Z l

0

ndx ðsÞ
o�xðr; qeÞ

oqe
þ � � � þ gdz ðsÞ

o/zðr; qeÞ
oqe

� �T

L0 dr. ð72Þ
Then, the total virtual work done by the three additive parts are
dW ¼ ðf ie þ f ce þ f deÞT � dqe. ð73Þ

Substituting (66) and (73) into (49), taking variations using the chain rule, and integrating by parts, yield
the generalized Lagrange equations of motion for the Cosserat rod element:
d

ds
oL
o _qj

 !
� oL
oqj

¼ f ie
j ðsÞ þ f ce

j ðsÞ þ f de
j ðs; qeÞ: ð74Þ
For a general configuration with nonzero generic nodal displacements qe, the ordinary differential equations
of motion with up to third order nonlinearities of displacements and first order kinetic terms can be ob-
tained as
Me€qe þ K eqe þ geðqeÞ ¼ f ieðsÞ þ f ceðsÞ þ f deðs; qeÞ; ð75Þ

where M e and K e are mass and (linear) stiffness matrices of the element model, g e(q e) is a nonlinear vector
with quadratic and cubic terms of qe. Since the mass of a typical rod, such as the springlike support com-
ponent of MEMS, is very small comparing with the mass of the main device in practice only the first order
kinetic terms are reserved in Eq. (75).

The detailed expressions of M e, K e and g e(q e) have been implemented in a MAPLE program (Wang
et al., 2004a). For the sake of illustration, the explicit expressions of Me, Ke and ge(qe) for a cantilever beam
as a special Cosserat rod element are listed in Appendix A.
6. Dynamical responses of rods by Cosserat rod elements

6.1. Assembly of equations of motion for whole system

We could analyze all of the types of systems consist of a set of interconnected components described in
the introduction by using Cosserat rod elements for the deformable parts or subdivided members. Two-and
three-dimensional frame structures require rotation-of-axes transformation for actions and displacements.
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For the sake of convenience, in this section we shall examine only the type of structure which is aligned with
reference axes, using properties of the Cosserat rod element developed in the preceding sections. The ana-
lysis of the response of a number of complex structures is beyond the scope of this paper and will be pre-
sented in future publications.

After stiffness, mass, and actual or equivalent nodal loads for individual Cosserat rod element are gen-
erated, we can assembly them to form the equations of motion for a whole system. We define global dis-
placement vector q holding the displacement variables for all mesh nodes, such that
q ¼ ½X 1 Y 1 Z1 Ux1 Uy1 Uz1 X 2 Y 2 Z2 Ux2 Uy2 Uz2 � � � �T. ð76Þ

The equations of motion for the whole system can be constructed by simply adding the contributions from
all the elements. In this way, expanding the matrix or operator for each individual element to make them
the same size as the system matrices or operators, we have
M ¼
Xne
i¼1

M e
i ; K ¼

Xne
i¼1

K e
i ; ð77Þ
and
gðqÞ ¼
Xne
i¼1

gei ðqÞ; f cðsÞ ¼
Xne
i¼1

f ce
i ðsÞ; f dðs; qÞ ¼

Xne
i¼1

f de
i ðs; qÞ. ð78Þ
where ne is the number of elements. In Eq. (77) M and K represent the system mass matrix and the system
(linear) stiffness matrix. Similarly, the action vectors fc(s) and fd(s, q) are actual and equivalent nodal loads
for the whole system. The contributions from the interaction forces and torques from all the elements must
be of balance and the total action must be vanished. Then the undamped equations of motion for the
assembled system become
M€qþ Kqþ gðqÞ ¼ f cðsÞ þ f dðs; qÞ. ð79Þ

This equation gives the system equations of motion all nodal displacements, regardless of whether they are
free or restricted.

In preparation for solving the nonlinear dynamic equations (79), as in the standard finite element pro-
cedure, we rearrange and partition it as follows
M ff M fr

M rf M rr


 �
€qf
€qr


 �
þ

K ff K fr

K rf K rr


 �
qf

qr


 �
þ

gfðqf ; qrÞ
grðqf ; qrÞ


 �
¼ f cf ðsÞ þ f d

f ðs; qf ; qrÞ
f crðsÞ þ f d

r ðs; qf ; qrÞ

" #
; ð80Þ
in which the subscript f refers to free nodal displacements while the subscript r denotes restrained nodal
displacements. If the support motions (at constraints) are zero, the equation (80) can be simplified to
M ff€qf þ K ffqf þ gfðqfÞ ¼ f c
fðsÞ þ f df ðs; qfÞ; ð81Þ
and
M rf€qf þ K rfqf þ grðqfÞ ¼ f crðsÞ þ f d
r ðs; qfÞ; ð82Þ
which can be used for solving the free displacements qf(s) and support actions f crðsÞ, respectively.

6.2. Simulation results and discussion for a simple cantilever

A cantilever, as shown in Fig. 2, is now presented as a simple example to demonstrate high accuracy and
excellent performance of the proposed Cosserat rod elements. Numerical calculations based on (81) are
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Fig. 2. Schematic of a simple cantilever.
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carried out for a uniform horizontal cantilever of length L = 0.3 m, of constant cross-section with width
B = 0.01 m and thickness D = 0.005 m. The mass density and the Young�s modulus are assumed to be
q = 3.0 · 103 kg/m3 and E = 2.08 · 108 Pa.

Dividing the cantilever into ne elements of equal length, we can establish the nonlinear differential equa-
tions of motion (81) for solving the free displacements. In what follows, the natural frequencies of the lin-
earized system are studied and used to compare with those derived from the classical beam theory presented
in textbooks (see, for example Ginsberg, 2001), and numerical simulations for the responses of the
nonlinear dynamical system (81) under external harmonic excitations are performed with Matlab.

First, the flexural natural frequencies calculated in terms of the linearized equations of the nonlinear sys-
tem (81) obtained by Cosserat element approach, together with the theoretical results obtained by employ-
ing the classical beam theory (CBT) are given in Table 1. The flexural natural frequencies in both e1–e3
plane and e2–e3 plane, based on the CRE approach, showed their excellent convergency (the corresponding
results listed in Table 1 are found, when only five Cosserat rod elements are used).

Fig. 3 represents the CRE convergency tests corresponding to the first three flexural natural frequencies
in e2–e3 plane of the rod. As can be seen for the first frequency, the jerrorj is found to be very small (60.1%)
even when only two elements are used. In fact the jerrorj for the first frequency is only 0.4535% when just
one element is used. For the second and third natural frequencies, the results are converging with approxi-
mately 0.1% error, when six elements are used.

In the second part of this example, based on the derived nonlinear system (81), numerical simulations are
performed to investigate the dynamic responses of the cantilever under harmonic excitations. The differen-
tial equations of motion are full coupled by the nonlinear terms and could exhibit internal resonance intro-
duced by the nonlinearities. They also exhibit external resonances when the external excitation is periodic
and the frequency of a component of its Fourier series is near one of the natural frequencies of the system,
or near a multiple of a natural frequencies. The detailed analysis of complex dynamic behavior, such as
bifurcation and chaos, of the system is not the main focus of this paper. We only compare here the re-
sponses of the system, when different number of elements are used.
Table 1
Flexural natural frequencies based on CRE approach and exact continua method

xi (rad/s) Flexural frequencies in e1–e3 plane Flexural frequencies in e2–e3 plane

CRE CBT jErrorj (%) CRE CBT jErrorj (%)

1 29.7607 29.7665 0.0197 14.8827 14.8833 0.0036
2 186.358 186.544 0.0995 93.2838 93.2718 0.0129
3 522.329 522.329 0.0000 261.868 261.164 0.2692
4 1028.68 1023.56 0.5005 516.914 511.778 1.0035
5 1707.74 1692.01 0.5155 857.104 846.007 1.3118
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Fig. 4. Displacement time histories of the rod with external loads fx(t) = 0.01cos(8t), fy(t) = 0.005sin(8t) and zero initial conditions:
two elements case.
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The displacement and angular time histories of the free end of the cantilever under external loads
f c
x ðtÞ ¼ 0.01 cosð8tÞ; f c

y ðtÞ ¼ 0.005 sinð8tÞ and at zero initial conditions are shown in Fig. 4 when two ele-
ments are used and in Fig. 5 when ten elements are used, respectively. It is interesting to note that ampli-
tudes and periods of the responses are very closed in this two situations. To enhance this observation, the
phase plane diagrams for Y ðtÞ– _Y ðtÞ in four different cases, namely one element, two elements, three ele-
ments and ten elements, are plotted in Fig. 6(a)–(d), respectively. Comparing the four diagrams in Fig. 6
shows that the modal when two or three elements are used can exhibit almost the same behavior of the
model when ten elements are used.

According to the analysis of natural frequencies and the analysis of harmonic responses of the estab-
lished nonlinear dynamic systems, we believe, in practical engineering problem, especial for the structure
composed of springlike flexural components such as the device in MEMS, only a few Cosserat rod elements
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are needed to model a flexural component. For the very slender flexural components, we can even use only
one element to model such a component.
7. Conclusion

A Cosserat rod element formulation for the modelling of three-dimensional dynamics of slender struc-
tures has been proposed in this paper. The modelling strategy of this new approach employed the exact
nonlinear kinematic relationships in the sense of Cosserat theory, and adopted the Bernoulli hypothesis.
Finite displacements and rotations as well as finite extensional, torsional, and bending strains are accounted
for. The Kirchoff constitutive relations, which provide an adequate description of elastic properties in terms
of a few elastic moduli, are adopted. A deformed configuration of the rod is described by the displacement
vector of the deformed centroid curves and an orthonormal moving frame, rigidly attached to the cross-sec-
tion of the rod. The position of the moving frame relative to the inertial frame is specified by the rotation
matrix, parametrized by a rotational vector. The approximation solutions of the nonlinear partial differen-
tial equations of motion in quasi-static sense are chosen as the shape functions with up to third order non-
linear terms of generic nodal displacements. This lends the approach very well to achieve higher accuracy of
the dynamic responses of the model by dividing the slender rod into a few elements. Based on the Lagran-
gian constructed by the Cosserat kinetic energy and strain energy expressions, the principle of virtual work
is employed to derive the ordinary differential equations of motion with third order nonlinear generic nodal
displacements.

A cantilever as a simple example has been presented to illustrate the use of the formulation developed
here to obtain the lower order nonlinear ordinary differential equations of motion of a given structure.
The natural frequency analysis for the linearized equations and the numerical simulation analysis for the
nonlinear model show that in practical engineering problem, especial for the structure composed of spring-
like flexural components such as the device in MEMS, only a few Cosserat rod elements are needed to
model a flexural component.

The mathematical simplicity when formulating deformable components enables more convenient for
modelling the multibody systems that consist of interconnected rigid and deformable components. The
Cosserat rod element approach therefore is feasible to be used to capture the most significant characteristics
of a multi-rigid and deformable body system in a few variables governed by nonlinear ordinary differential
equations of motion.

As the first step to present the Cosserat rod element approach, we have limited our attention to the mod-
elling of Cosserat rod elements in which the effect of shear has been neglected. The extension of the present
formulation to the modelling of more general Cosserat rod elements in which the finite extensional, tor-
sional, bending strains as well as shear are accounted for is highly desirable.
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Appendix A

Let us assume that a uniform cantilever beam of length L, of constant cross-section with area A and den-
sity q, is fixed at s = 0 and free at s = L. In this case, we have qa = 0, thus qe = qb. Consequently, M

e, K e

become 6 · 6 matrices, and ge(qe) is a six-dimensional nonlinear vectorial functions of qe = qb. They are
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Me ¼

13ll2þ42I22
35l 0 0 0 � I22

10
� 11ll2

210
0

0 13ll2þ42I11
35l 0 I11

10
þ 11ll2

210
0 0

0 0 ll
3

0 0 0

0 I11
10
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0 2I11l
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þ ll3
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� 11ll2
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þ ll3
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0
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3

2
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3
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; ð83Þ

K e
c ¼

12J22
l3

0 0 0 � 6J22
l2

0

0 12J11
l3

0 6J11
l2

0 0

0 0 K33

l 0 0 0
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l2

0 4J11
l 0 0

� 6J22
l2

0 0 0 4J22
l 0

0 0 0 0 0 J33
l

2
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3
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; ð84Þ
and
g1ðqeÞ ¼ g1;1XbZb þ g1;2Y bUzb þ g1;3ZbUyb þ g1;4UxbUzb þ g1;5X
3
b þ g1;6X

2
bUyb

þ g1;7XbY 2
b þ g1;8XbY bUxb þ g1;9XbZ2

b þ g1;10XbU
2
xb þ g1;11XbU

2
yb

þ g1;12XbU
2
zb þ g1;13Y

2
bUyb þ g1;14Y bZbUzb þ g1;15Y bUxbUyb þ g1;16Z

2
bUyb

þ g1;17ZbUxbUzb þ g1;18U
2
xbUzb þ g1;19U

3
yb þ g1;20UybU

2
zb; ð85Þ

g2ðqeÞ ¼ g2;1XbUzb þ g2;2Y bZb þ g2;3ZbUxb þ g2;4UybUzb þ g2;5X
2
bY b þ g2;6X

2
bUxb;

þ g2;7XbY bUyb þ g2;8XbZbUzb þ g2;9XbUxbUyb þ g2;10Y
3
b þ g2;11Y

2
bUxb

þ g2;12Y bZ2
b þ g2;13Y bU

2
xb þ g2;14Y bU

2
yb þ g2;15Y bU

2
zb þ g2;16Z

2
bUxb

þ g2;17ZbUybUzb þ g2;18U
3
xb þ g2;19UxbU

2
yb þ g2;20UxbU

2
zb; ð86Þ

g3ðqeÞ ¼ g3;1X
2
b þ g3;2XbUyb þ g3;3Y

2
b þ g3;4Y bUxb þ g3;5U

2
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3
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where the coefficients of second order nonlinear terms are specified as
g1;1 ¼ 2g3;1 ¼
6ðK33l

2 � 20J 22Þ
5l4

; g1;2 ¼ g2;1 ¼ g6;1 ¼
6ðJ 22 � J 11Þ

l3
;

g1;3 ¼ g3;2 ¼ �g5;1 ¼
K33l

2 � 60J 22

10l3
; g1;4 ¼ g4;1 ¼ �g6;2 ¼

4J 11 � J 22 � J 33

l2
;

g2;2 ¼ 2g3;3 ¼
6ðK33l

2 � 20J 11Þ
5l4

; g2;3 ¼ g3;4 ¼ g4;2 ¼
K33l

2 � 60J 11

10l3
;
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J 11 � 4J 22 þ J 33

l2
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1

2
g4;3 ¼ � 1

2
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K33

15
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g4;4 ¼ �g5;4 ¼ g6;4 ¼
J 11 � J 22

l
.

The coefficients of third order nonlinear terms are specified as
g1;5 ¼
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33l
4 � 160J 22K33l

2 � 560J 2
22Þ

175K33l
7

;

g1;6 ¼
9ð7K2
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6
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7
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g1;8 ¼
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g1;9 ¼ �K2
33l

4 þ 840J 22K33 � 25200J 2
22

700J 22l
5

;

g1;10 ¼
14K33l
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175l3
� 52K33l
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35J 33K33l
5
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g1;11 ¼
63K2

33l
4 � 520J 22K33l

2 � 38640J 2
22

700K33l
5

;

g1;12 ¼
20J 2

11 � 16J 11J 22 � 4J 11J 33 � 4J 2
22 þ 4J 22J 33 � J 2

33

5J 11l
3

;

g1;13 ¼ � 3ð7K33l
2 � 480J 22 þ 220J 11Þ

350l4
þ 9ð10K33l

2ðJ 11 � J 22Þ2 þ 112J 11J 22J 33Þ
35J 33K33l

6
;

g1;14 ¼
12ðJ 11 � J 22Þ

l4
;

g1;15 ¼ � 7K33l
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700l3
þ 118K33l
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33l
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2 � 2J 22K33l
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11 þ 60J 11J 22 þ 60J 11J 33

60J 11l
3
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g1;19 ¼ � 7K33l
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10J 11l
2

;



D.Q. Cao et al. / International Journal of Solids and Structures 43 (2006) 760–783 781
g2;7 ¼ � 6ð7K33l
2 � 480J 22 þ 220J 11Þ

350l4
þ 18ð10K33l

2ðJ 11 � J 22Þ2 þ 112J 11J 22J 33Þ
35J 33K33l

6
;

g2;10 ¼
18ð7K2

33l
4 � 160J 11K33l

2 � 560J 2
11Þ

175K33l
7

;

g2;11 ¼
9ð7K2

33l
4 � 260J 11K33l

2 � 3360J 2
11Þ

350K33l
6

;

g2;12 ¼ �K2
33l

4 þ 840J 11K33 � 25200J 2
11

700J 11l
5

;

g2;13 ¼
63K2

33l
4 � 520J 11K33l

2 � 38640J 2
11

700K33l
5

;

g2;14 ¼
14K33l

2 � 500J 22 � 80J 11 þ 175J 33

175J 33K33l
5

� 52K33l
2ðJ 11 � J 22Þ2 þ 504J 11J 22J 33

35J 33K33l
5

;

g2;15 ¼
20J 2

22 � 16J 11J 22 � 4J 22J 33 � 4J 2
11 þ 4J 11J 33 � J 2

33

5J 22l
3

;

g2;16 ¼ �K2
33l

4 � 8400J 2
11

1400J 11l
4

;

g2;17 ¼ � 5J 22K33l
2 � 2J 11K33l

2 þ J 33K33l
2 � 240J 2

22 þ 60J 11J 22 þ 60J 22J 33

60J 22l
3

;

g2;18 ¼
7K33l

4 � 270J 11K33l
2 � 13860J 2

11

1050K33l
4

;

g2;19 ¼
7K33l

2 � 240J 22 � 30J 11

1050l2
� 40K33l

2ðJ 11 � J 22Þ2 þ 462J 11J 22J 33

35l2
;

g2;20 ¼
10J 2

22 � 16J 11J 22 þ J 22J 33 � 4J 2
11 þ 4J 11J 33 � J 2

33

10J 22l
2

;

g3;14 ¼ �K33ð11K33l
2 � 840J 11Þ

6300J 11l
;

g3;15 ¼ �K33ð11K33l
2 � 840J 22Þ

6300J 22l
;

g3;16 ¼
K33ð2J 2

11 � J 11J 33 � 2J 2
22 þ J 22J 33Þ

120J 11J 22

;

g4;18 ¼
7K33l

4 � 180J 11K33l
2 � 7560J 2

11

1575K33l
3

;

g4;19 ¼
14K33l

2 � 180ðJ 11 þ J 22Þ þ 175J 33

1575l
� 285K33l

2ðJ 11 � J 22Þ2 þ 3024J 11J 22J 33

315J 33K33l
3

;

g4;18 ¼
12J 2

11 þ 28J 11J 22 � 12J 11J 33 � 20J 2
22 þ 2J 22J 33 þ 3J 2

33

60J 22l
;

g5;19 ¼ � 7K33l
4 � 180J 22K33l

2 � 7560J 2
22

1575K33l
3

;

g5;20 ¼ � 12J 2
22 þ 28J 11J 22 � 12J 22J 33 � 20J 2
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and
g2;5 ¼ g1;7; g2;6 ¼ 1
2
g1;8; g2;8 ¼ g1;14; g2;9 ¼ g1;15; g3;7 ¼ g1;9;

g3;8 ¼ g1;14; g3;9 ¼ 1
2
g1;16; g3;10 ¼ g1;17; g3;11 ¼ g2;12; g3;12 ¼ 2g1;16;

g3;13 ¼ �g2;17; g4;5 ¼ 1
2
g1;8; g4;6 ¼ g1;10; g4;7 ¼ g1;15; g4;8 ¼ g1;17;

g4;9 ¼ 3g1;18; g4;10 ¼ � 1
3
g2;11; g4;11 ¼ g2;13; g4;12 ¼ g2;16; g4;13 ¼ 3g2;18;

g4;14 ¼ g2;19; g4;15 ¼ g2;20; g4;16 ¼ g3;14; g4;17 ¼ g3;16; g5;5 ¼ 1
3
g1;6;

g5;6 ¼ �g1;11; g5;7 ¼ � 1
2
g2;7; g5;8 ¼ �g1;15; g5;9 ¼ �g1;16; g5;10 ¼ �g1;18;

g5;11 ¼ �3g1;19; g5;12 ¼ �g1;20; g5;13 ¼ �g2;14; g5;14 ¼ �g2;17; g5;15 ¼ �g2;19;

g5;16 ¼ g3;15; g5;17 ¼ �g3;16; g5;18 ¼ �g4;19; g6;5 ¼ g1;12; g6;6 ¼ g1;14;

g6;7 ¼ g1;17; g6;8 ¼ 2g1;20; g6;9 ¼ g2;15; g6;10 ¼ �g3;13; g6;11 ¼ 2g2;20;

g6;12 ¼ g3;16; g6;13 ¼ �g4;20; g6;14 ¼ g5;20.
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